A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks

Ronald J. Williams
College of Computer Science
Northeastern University
Boston, Massachusetts 02115

and
David Zipser
Institute for Cognitive Science
University of California, San Diego
La Jolla, California 92093

Appears in Neural Computation, 1, pp. 270-280, 1989.

Abstract

The exact form of a gradient-following learning algorithm for completely recurrent net-
works running in continually sampled time is derived and used as the basis for practical
algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage
that they do not require a precisely defined training interval, operating while the network
runs; and (2) the disadvantage that they require nonlocal communication in the network be-
ing trained and are computationally expensive. These algorithms are shown to allow networks
having recurrent connections to learn complex tasks requiring the retention of information
over time periods having either fixed or indefinite length.

1 Introduction

A major problem in connectionist theory is to develop learning algorithms that can tap the full
computational power of neural networks. Much progress has been made with feedforward net-
works, and attention has recently turned to developing algorithms for networks with recurrent
connections, which have important capabilities not found in feedforward networks, including at-
tractor dynamics and the ability to store information for later use. Of particular interest is their
ability to deal with time-varying input or output through their own natural temporal operation.

A variety of approaches to learning in networks with recurrent connections have been proposed.
Algorithms for the special case of networks that settle to stable states, often regarded as associative

memory networks, have been proposed by Hopfield (1982), Lapedes and Farber (1986), Almeida
(1987), Pineda (1988), and Rohwer and Forrest (1987).

Other researchers have focused on learning algorithms for more general networks that use
recurrent connections to deal with time-varying input and/or output in nontrivial ways. A general
framework for such problems was laid out by Rumelhart, Hinton, and Williams (1986), who
unfolded the recurrent network into a multilayer feedforward network that grows by one layer
on each time step. We will call this approach backpropagation through time. One of its primary
strengths is its generality, but a corresponding weakness is its growing memory requirement when
given an arbitrarily long training sequence.

Other approaches to training recurrent nets to handle time-varying input or output have been
suggested or investigated by Jordan (1986), Bachrach (1988), Mozer (1988), Elman (1988), Servan-
Schreiber, Cleeremans, and McClelland (1988), Robinson and Fallside (1987), Stornetta, Hogg, and
Huberman (1987), Gallant and King (1988), and Pearlmutter (1988). Many of these approaches
use restricted architectures or are based on more computationally limited approximations to the
full backpropagation-through-time computation.

The approach we propose here enjoys the generality of the backpropagation-through-time ap-
proach while not suffering from its growing memory requirement in arbitrarily long training se-
quences. It coincides with an approach suggested in the system identification literature (McBride
& Narendra, 1965) for tuning the parameters of general dynamical systems. The work of Bachrach
(1988) and Mozer (1988) represents special cases of the algorithm presented here, and Robinson
and Fallside (1987) have given an alternative description of the full algorithm as well. However,
to the best of our knowledge, none of these investigators has published an account of the behavior
of this algorithm in unrestricted architectures.

2 The Learning Algorithm and Variations

2.1 The Basic Algorithm

Let the network have n units, with m external input lines. Let y(¢) denote the n-tuple of outputs
of the units in the network at time ¢, and let x(¢) denote the m-tuple of external input signals
to the network at time ¢. We concatenate y(¢) and x(¢) to form the (m + n)-tuple z(t), with U
denoting the set of indices k£ such that z; is the output of a unit in the network and I the set of
indices k£ for which z; is an external input. The indices on y and x are chosen to correspond to

those of z, so that
(1) = { wlt) ifkeU. (1)

Let W denote the weight matrix for the network, with a unique weight between every pair
of units and also from each input line to each unit. By adopting the indexing convention just
described, we can incorporate all the weights into this single ntimes(m+n) matrix. To allow each
unit to have a bias weight we simply include among the m input lines one input whose value is
always 1.

In what follows we use a discrete time formulation and we assume that the network consists
entirely of semilinear units; it is straightforward to extend the approach to continuous time and

other forms of differentiable unit computation. We let

se(t) = Y wua(t) (2)

levurl

denote the net input to the kth unit at time ¢, for £ € U, with its output at the next time step
being
ye(t + 1) = fir(se(t)), (3)

where f; is the unit’s squashing function.

Thus the system of equations 2 and 3, where k ranges over U, constitute the entire dynamics
of the network, where the 2z, values are defined by equation 1. Note that the external input at
time ¢ does not influence the output of any unit until time ¢ + 1.

We now derive an algorithm for training this network in what we will call a temporal supervised
learning task, meaning that certain of the units’ output values are to match specified target values
at specified times. Let T'(¢) denote the set of indices k € U for which there exists a specified target
value dj(t) that the output of the kth unit should match at time ¢. Then define a time-varying
n-tuple e by

ex(t) = { 0 " g otherwis(e,) (4)

Note that this formulation allows for the possibility that target values are specified for different
units at different times. The set of units considered to be “visible” can thus be time-varying. Now

let
T(t) =1/2 3 [ex(t)]’ (5)
keU
denote the overall network error at time ¢. For the moment, assume that the network is run
starting at time £y up to some final time ¢;. We take as the objective the minimization of the total
error
t1
Jtotal(toatl) - Z J(t) (6)
t=to+1

over this trajectory. We do this by a gradient descent procedure, adjusting W along the negative
of VW Jiotal(to, t + 1).

Since the total error is just the sum of the errors at the individual time steps, one way to
compute this gradient is by accumulating the values of VW .J(¢) for each time step along the
trajectory. The overall weight change for any particular weight w;; in the network can thus be
written as

tq
sz’j = Z sz’j(t)a (7)
t=to+1
where 97
t
Aw;j(t) = (JW(U) (8)
and « is some fixed positive learning rate.
o o1 ot
t Yk t
_ — > t 9
8’(1)Z'j kEZUPk() 8’(1)Z'j ’ ()

3

where Oy (t)/0w;; is easily computed by differentiating the network dynamics (equations 2 and
3), yielding
8yk (t + 1)
6w¢j

= fr'(sx(1)) Zwklagqi)(;) + 0inzi(t)] (10)

leu

where d;;, denotes the Kronecker delta. Because we assume that the initial state of the network
has no functional dependence on the weights, we also have

Ay (to)

6w¢j

~0. (11)

These equations hold for all k e U, i € U, and j € U U I.
We thus create a dynamical system with variables pfj forallk e U, €U, and j € UUI, and
dynamics given by

pfj(t +1) = fi' (se(®)) [D2 wklpéj(t) + 0ikz;(t) |, (12)
leu
with initial conditions

pfj(to) =0, (13)

and it follows that O (t)

k Yr(t
pi;(t) = (14)

J awij

for every time step t and all appropriate i, j, and k.

The precise algorithm then consists of computing, at each time step t from ¢, to t;, the
quantities pfj(t), using equations 12 and 13, and then using the discrepancies ey (t) between the
desired and actual outputs to compute the weight changes

Auwy(t) = a Y ex(t)pl (1) (15)

keU

The overall correction to be applied to each weight w;; in the net is then simply the sum of these
individual Aw;;(t) values for each time step ¢ along the trajectory.
In the case when each unit in the network uses the logistic squashing function we use

S (se(t)) =y (t + 1)[1 — ya(t 4 1)] (16)

in equation 12.

2.2 Real-Time Recurrent Learning

The above algorithm was derived on the assumption that the weights remained fixed throughout
the trajectory. In order to allow real-time training of behaviors of indefinite duration, however,
it is useful to relax this assumption and actually make the weight changes while the network
is running. This has the important advantage that no epoch boundaries need to be defined for
training the network, leading to both a conceptual and an implementational simplification of the
procedure. For this algorithm, we simply increment each weight w;; by the amount Aw;;(t) given

4

by equation 15 at time step ¢, without accumulating the values elsewhere and making the weight
changes at some later time.

A potential disadvantage of this real-time procedure is that it no longer follows the precise
negative gradient of the total error along a trajectory. However, this is exactly analogous to
the commonly used method of training a feedforward net by making weight changes after each
pattern presentation rather than accumulating them elsewhere and then making the net change
after the end of each complete cycle of pattern presentation. While the resulting algorithm is no
longer guaranteed to follow the gradient of total error, the practical differences are often slight,
with the two versions becoming more nearly identical as the learning rate is made smaller. The
most severe potential consequence of this departure from true gradient-following behavior for real-
time procedure for training the dynamics is that the observed trajectory may itself depend on
the variation in the weights caused by the learning algorithm, which can be viewed as providing
another source of negative feedback in the system. To avoid this, one wants the time scale of the
weight changes to be much slower than the time scale of the network operation, meaning that the
learning rate must be sufficiently small.

2.3 Teacher-Forced Real-Time Recurrent Learning

An interesting technique that is frequently used in dynamical supervised learning tasks (Jordan,
1986; Pineda, 1988) is to replace the actual output y,(f) of a unit by the teacher signal dg(t) in
subsequent computation of the behavior of the network, whenever such a value exists. We call this
technique teacher forcing. The dynamics of a teacher-forced network during training are given by
equations 2 and 3, as before, but where z(t) is now defined by

) = 4 dut) itk e T (17)
ye(t) itk e U —T().

rather than by equation 1.
To derive a learning algorithm for this situation, we once again differentiate the dynamical
equations with respect to w;;. This time, however, we find that

= fi/(sk(?)) { > ow Oult) + 6ikzj(t)} , (18)

Kl
€U —T(t) Owij

since 0d;(t)/0w;; = 0 for all [€ T(t) and for all . For the teacher-forced version we thus alter
our learning algorithm so that the dynamics of the pfj values are given by

py(t+1) = fi' (si(1)) [Y wepl(t) + 5ik2j(t)} : (19)

leU—T(t)

rather than equation 12, with the same initial conditions as before. Note that equation 19 is
the same as equation 12 if we treat the values of pl,(t) as zero for all [€ T(t) when computing
pfj(t +1).

The teacher-forced version of the algorithm is thus essentially the same as the earlier one, with
two simple alterations: (1) where specified, desired values are used in place of actual values to
compute future activity in the network; and (2) the corresponding pfj values are set to zero after
they have been used to compute the Aw;; values.

2.4 Computational Features of the Real-Time Recurrent Learning Al-
gorithms

It is useful to view the triply indexed set of quantities pfj as a matrix, each of whose rows corre-
sponds to a weight in the network and each of whose columns corresponds to a unit in the network.
Looking at the update equations it is not hard to see that, in general, we must keep track of the
values pfj even for those k corresponding to units that never receive a teacher signal. Thus we
must always have n columns in this matrix. However, if the weight w;; is not to be trained (as
would happen, for example, if we constrain the network topology so that there is no connection
from unit j to unit), then it is not necessary to compute the value pfj for any k € U. This means
that this matrix need only have a row for each adaptable weight in the network, while having a
column for each unit. Thus the minimal number of pfj values needed to store and update for a
general network having n units and r adjustable weights is nr. For a fully interconnected network
of n units and m external input lines in which each connection has one adaptable weight, there
are n® 4+ mn” such pf; values.

3 Simulation Experiments

We have tested these algorithms on several tasks, most of which can be characterized as requiring
the network to learn to configure itself so that it stores important information computed from
the input stream at earlier times to help determine the output at later times. In other words,
the network is required to learn to represent useful internal state to accomplish these tasks. For
all the tasks described here, the experiments were run with the networks initially configured with
full interconnections among the units, with every input line connected to every unit, and with all
weights having small randomly chosen values. The units to be trained were selected arbitrarily.
More details on these simulations can be found in Williams and Zipser (1988).

3.1 Pipelined XOR

For this task, two nonbias input lines are used, each carrying a randomly selected bit on each
time step. One unit in the network is trained to match a teacher signal at time ¢ consisting of the
XOR of the input values given to the network at time ¢t — tau, where the computation delay tau
is chosen in various experiments to be 2, 3, or 4 time steps. With 3 units and a delay of 2 time
steps, the network learns to configure itself to be a standard 2-hidden-unit multilayer network for
computing this function. For longer delays, more units are required, and the network generally
configures itself to have more layers in order to match the required delay. Teacher forcing was not
used for this task.

3.2 Simple Sequence Recognition

For this task, there are two units and m nonbias input lines, where m >= 2. Two of the input
lines, called the a and b lines, serve a special purpose, with all others serving as distractors. At
each time step exactly one input line carries a 1, with all others carrying a 0. The object is for a
selected unit in the network to output a 1 immediately following the first occurrence of activity
on the b line following activity on the a line, regardless of the intervening time span. At all other
times, this unit should output a 0. Once such a b occurs, its corresponding a is considered to be
“used up,” so that the next time the unit should output a 1 is when a new a has been followed
by its first “matching” b. Unlike the previous task, this cannot be performed by any feedforward
network whose input comes from tapped delay lines on the input stream. A solution consisting
essentially of a flip-flop and an AND gate is readily found by the unforced version of the algorithm.

3.3 Delayed Nonmatch to Sample

In this task, the network must remember a cued input pattern and then compare it to subsequent
input patterns, outputting a 0 if they match and a 1 if they don’t. We have investigated a simple
version of this task using a network with two input lines. One line represents the pattern and is
set to 0 or 1 at random on each cycle. The other line is the cue that, when set to 1, indicates that
the corresponding bit on the pattern line must be remembered and used for matching until the
next occurrence of the cue. The cue bit is set randomly as well. This task has some elements in
common with both of the previous tasks in that it involves an internal computation of the XOR
of appropriate bits (requiring a computation delay) as well as having the requirement that the
network retain indefinitely the value of the cued pattern. One of the interesting features of the
solutions found by the unforced version of the algorithm is the nature of the internal representation
of the cued pattern. Sometimes a single unit is recruited to act as an appropriate flip-flop, with
the other units performing the required logic; at other times a dynamic distributed representation
is developed in which no static pattern indicates the stored bit.

3.4 Learning to Be a Turing Machine

The most elaborate of the tasks we have studied is that of learning to mimic the finite state
controller of a Turing machine deciding whether a tape marked with an arbitrary length string of
left and right parentheses consists entirely of sets of balanced parentheses. The network observes
the actions of the finite state controller but is not allowed to observe its states. Networks with 15
units always learned the task. The minimum-size network to learn the task had 12 units.

3.5 Learning to Oscillate

Three simple network oscillation tasks that we have studied are (1) training a single unit to produce
010101...; (2) training a 2-unit net so that one of the units produces 00110011...; and (3) training
a 2-unit net so that one of the units produces approximately sinusoidal oscillation of period on
the order of 25 time steps in spite of the nonlinearity of the units involved.

We have used both versions of the algorithm on these oscillation tasks, with and without
teacher forcing, and we have found that only the version with teacher forcing is capable of solving

these problems in general. The reason for this appears to be that in order to produce oscillation
in a net that initially manifests settling behavior (because of the initial small weight values), the
weights must be adjusted across a bifurcation boundary, but the gradient itself cannot yield the
necessary information because it is zero or very close to zero. However, if one is free to adjust both
weights and initial conditions, at least in some cases this problem disappears. Something like this
appears to be at the heart of the success of the use of teacher forcing: By using desired values
in the net, one is helping to control the initial conditions for the subsequent dynamics. Pineda
(1988) has observed a similar need for teacher forcing when attempting to add new stable points
in an associative memory rather than just moving existing ones around.

4 Discussion

Our primary goal here has been to derive a learning algorithm to train completely recurrent,
continually updated networks to learn temporal tasks. Our emphasis has been on using uniform
starting configurations that contain no a priori information about the temporal nature of the task.
In most cases we have used statistically derived training sets that have not been extensively opti-
mized to promote learning. The results of the simulation experiments described here demonstrate
that the algorithm has sufficient generality and power to work under these conditions.

The algorithm we have described here is nonlocal in the sense that, for learning, each weight
must have access to both the complete recurrent weight matrix W and the whole error vector e.
This makes it unlikely that this algorithm, in its current form, can serve as the basis for learning
in actual neurophysiological networks. The algorithm is, however, inherently quite parallel so that
computation speed would benefit greatly from parallel hardware.

The solutions found by the algorithm are often dauntingly obscure, particularly for complex
tasks involving internal state. This observation is already familiar in work with feedforward
networks. This obscurity has often limited our ability to analyze the solutions in sufficient detail.
In the simpler cases, where we can discern what is going on, an interesting kind of distributed
representation can be observed. Rather than only remembering a pattern in a static local or
distributed group of units, the networks sometimes incorporate the data that must be remembered
into their functioning in such a way that there is no static pattern that represents it. This gives
rise to dynamic internal representations that are, in a sense, distributed in both space and time.

Acknowledgements

We wish to thank Jonathan Bachrach for sharing with us his insights into the issue of training
recurrent networks. It was his work that first brought to our attention the possibility of on-line
computation of the error gradient, and we hereby acknowledge his important contribution to our
own development of these ideas.

This research was supported by Grant IRI-8703566 from the National Science Foundation to
the first author and Contract N00014-87-K-0671 from the Office of Naval Research, Grant 86-
0062 from the Air Force Office of Scientific Research, and grants from the System Development
Foundation to the second author.

References

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a com-
binatorial environment. Proceedings of the IEEE First International Conference on Neural
Networks.

Bachrach, J. (1988). Learning to represent state. Unpublished master’s thesis, University of
Massachusetts, Amherst.

Elman, J. L. (1988). Finding structure in time (CRL Tech. Rep. 8801). La Jolla: University of
California, San Diego, Center for Research in Language.

Gallant, S. I. & King, D. (1988). Experiments with sequential associative memories. Proceedings
of the Tenth Annual Conference of the Cognitive Science Society.

Hopfield, J. J. (1982). Neural networks as physical systems with emergent collective computa-
tional abilities. Proceedings of the National Academy of Sciences, 79, 2554-2558.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine.
Proceedings of the Eighth Annual Conference of the Cognitive Science Society, 531-546.

Lapedes, A. & Farber, R. (1986). A self-optimizing, nonsymmetrical neural net for content ad-
dressable memory and pattern recognition, Physica D, 22, 247-259.

Mozer, M. C. (1988). A focused back-propagation algorithm for temporal pattern recognition (Tech.
Rep.). University of Toronto, Departments of Psychology and Computer Science.

McBride, L. E.; Jr. & Narendra, K. S. (1965). Optimization of time-varying systems. [EEE
Transactions on Automatic Control, 10, 289-294.

Pearlmutter, B. A. (1988). Learning state space trajectories in recurrent neural networks: A pre-
liminary report (Tech. Rep. AIP-54). Pittsburgh: Carnegie Mellon University, Department
of Computer Science.

Pineda, F. J. (1988). Dynamics and architecture for neural computation, Journal of Complezity
4, 216-245.

Robinson, A. J. & Fallside, F. (1987). The utility driven dynamic error propagation network
(Tech. Rep. CUED/F-INFENG/TR.1). Cambridge, England: Cambridge University Engi-
neering Department.

Rohwer, R. & Forrest, B. (1987). Training time-dependence in neural networks. Proceedings of
the IEEFE First International Conference on Neural Networks.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. In D. E. Rumelhart, J. .. McClelland, & the PDP Research Group,

Parallel distributed processing: Fxplorations in the microstructure of cognition. Vol. 1. Foun-
dations. Cambridge: MIT Press/Bradford Books.

Servan-Schreiber, D., Cleeremans, A., & McClelland (1988). Encoding sequential structure in

simple recurrent networks (Tech. Rep. CMU-CS-88-183). Pittsburgh: Carnegie Mellon Uni-
versity, Department of Computer Science.

Stornetta, W. S., Hogg, T., & Huberman, B. A. (1987). A dynamical approach to temporal
pattern processing. Proceedings of the IEEE Conference on Neural Information Processing
Systems.

10

