
A Learning Algorithm for Continually Running FullyRecurrent Neural NetworksRonald J. WilliamsCollege of Computer ScienceNortheastern UniversityBoston, Massachusetts 02115andDavid ZipserInstitute for Cognitive ScienceUniversity of California, San DiegoLa Jolla, California 92093Appears in Neural Computation, 1, pp. 270-280, 1989.AbstractThe exact form of a gradient-following learning algorithm for completely recurrent net-works running in continually sampled time is derived and used as the basis for practicalalgorithms for temporal supervised learning tasks. These algorithms have: (1) the advantagethat they do not require a precisely de�ned training interval, operating while the networkruns; and (2) the disadvantage that they require nonlocal communication in the network be-ing trained and are computationally expensive. These algorithms are shown to allow networkshaving recurrent connections to learn complex tasks requiring the retention of informationover time periods having either �xed or inde�nite length.1 IntroductionA major problem in connectionist theory is to develop learning algorithms that can tap the fullcomputational power of neural networks. Much progress has been made with feedforward net-works, and attention has recently turned to developing algorithms for networks with recurrentconnections, which have important capabilities not found in feedforward networks, including at-tractor dynamics and the ability to store information for later use. Of particular interest is theirability to deal with time-varying input or output through their own natural temporal operation.A variety of approaches to learning in networks with recurrent connections have been proposed.Algorithms for the special case of networks that settle to stable states, often regarded as associative1

memory networks, have been proposed by Hop�eld (1982), Lapedes and Farber (1986), Almeida(1987), Pineda (1988), and Rohwer and Forrest (1987).Other researchers have focused on learning algorithms for more general networks that userecurrent connections to deal with time-varying input and/or output in nontrivial ways. A generalframework for such problems was laid out by Rumelhart, Hinton, and Williams (1986), whounfolded the recurrent network into a multilayer feedforward network that grows by one layeron each time step. We will call this approach backpropagation through time. One of its primarystrengths is its generality, but a corresponding weakness is its growing memory requirement whengiven an arbitrarily long training sequence.Other approaches to training recurrent nets to handle time-varying input or output have beensuggested or investigated by Jordan (1986), Bachrach (1988), Mozer (1988), Elman (1988), Servan-Schreiber, Cleeremans, and McClelland (1988), Robinson and Fallside (1987), Stornetta, Hogg, andHuberman (1987), Gallant and King (1988), and Pearlmutter (1988). Many of these approachesuse restricted architectures or are based on more computationally limited approximations to thefull backpropagation-through-time computation.The approach we propose here enjoys the generality of the backpropagation-through-time ap-proach while not su�ering from its growing memory requirement in arbitrarily long training se-quences. It coincides with an approach suggested in the system identi�cation literature (McBride& Narendra, 1965) for tuning the parameters of general dynamical systems. The work of Bachrach(1988) and Mozer (1988) represents special cases of the algorithm presented here, and Robinsonand Fallside (1987) have given an alternative description of the full algorithm as well. However,to the best of our knowledge, none of these investigators has published an account of the behaviorof this algorithm in unrestricted architectures.2 The Learning Algorithm and Variations2.1 The Basic AlgorithmLet the network have n units, with m external input lines. Let y(t) denote the n-tuple of outputsof the units in the network at time t, and let x(t) denote the m-tuple of external input signalsto the network at time t. We concatenate y(t) and x(t) to form the (m + n)-tuple z(t), with Udenoting the set of indices k such that zk is the output of a unit in the network and I the set ofindices k for which zk is an external input. The indices on y and x are chosen to correspond tothose of z, so that zk(t) = (xk(t) if k 2 Iyk(t) if k 2 U . (1)Let W denote the weight matrix for the network, with a unique weight between every pairof units and also from each input line to each unit. By adopting the indexing convention justdescribed, we can incorporate all the weights into this single ntimes(m+n) matrix. To allow eachunit to have a bias weight we simply include among the m input lines one input whose value isalways 1.In what follows we use a discrete time formulation and we assume that the network consistsentirely of semilinear units; it is straightforward to extend the approach to continuous time and2

other forms of di�erentiable unit computation. We letsk(t) = Xl2U[I wklzl(t) (2)denote the net input to the kth unit at time t, for k 2 U , with its output at the next time stepbeing yk(t+ 1) = fk(sk(t)); (3)where fk is the unit's squashing function.Thus the system of equations 2 and 3, where k ranges over U , constitute the entire dynamicsof the network, where the zk values are de�ned by equation 1. Note that the external input attime t does not in
uence the output of any unit until time t + 1.We now derive an algorithm for training this network in what we will call a temporal supervisedlearning task, meaning that certain of the units' output values are to match speci�ed target valuesat speci�ed times. Let T (t) denote the set of indices k 2 U for which there exists a speci�ed targetvalue dk(t) that the output of the kth unit should match at time t. Then de�ne a time-varyingn-tuple e by ek(t) = (dk(t)� yk(t) if k 2 T (t)0 otherwise, (4)Note that this formulation allows for the possibility that target values are speci�ed for di�erentunits at di�erent times. The set of units considered to be \visible" can thus be time-varying. Nowlet J(t) = 1=2Xk2U[ek(t)]2 (5)denote the overall network error at time t. For the moment, assume that the network is runstarting at time t0 up to some �nal time t1. We take as the objective the minimization of the totalerror Jtotal(t0; t1) = t1Xt=t0+1 J(t) (6)over this trajectory. We do this by a gradient descent procedure, adjusting W along the negativeof rWJtotal(t0; t+ 1).Since the total error is just the sum of the errors at the individual time steps, one way tocompute this gradient is by accumulating the values of rWJ(t) for each time step along thetrajectory. The overall weight change for any particular weight wij in the network can thus bewritten as �wij = t1Xt=t0+1�wij(t); (7)where �wij(t) = ��@J(t)@wij (8)and � is some �xed positive learning rate.Now �@J(t)@wij = Xk2U ek(t)@yk(t)@wij ; (9)3

where @yk(t)=@wij is easily computed by di�erentiating the network dynamics (equations 2 and3), yielding @yk(t+ 1)@wij = fk 0(sk(t)) 24Xl2U wkl@yl(t)@wij + �ikzj(t)35 ; (10)where �ik denotes the Kronecker delta. Because we assume that the initial state of the networkhas no functional dependence on the weights, we also have@yk(t0)@wij = 0: (11)These equations hold for all k 2 U , i 2 U , and j 2 U [I.We thus create a dynamical system with variables pkij for all k 2 U , i 2 U , and j 2 U [I, anddynamics given by pkij(t+ 1) = fk 0(sk(t)) 24Xl2U wklplij(t) + �ikzj(t)35 ; (12)with initial conditions pkij(t0) = 0; (13)and it follows that pkij(t) = @yk(t)@wij (14)for every time step t and all appropriate i, j, and k.The precise algorithm then consists of computing, at each time step t from t0 to t1, thequantities pkij(t), using equations 12 and 13, and then using the discrepancies ek(t) between thedesired and actual outputs to compute the weight changes�wij(t) = �Xk2U ek(t)pkij(t): (15)The overall correction to be applied to each weight wij in the net is then simply the sum of theseindividual �wij(t) values for each time step t along the trajectory.In the case when each unit in the network uses the logistic squashing function we usefk 0(sk(t)) = yk(t+ 1)[1� yk(t+ 1)] (16)in equation 12.2.2 Real-Time Recurrent LearningThe above algorithm was derived on the assumption that the weights remained �xed throughoutthe trajectory. In order to allow real-time training of behaviors of inde�nite duration, however,it is useful to relax this assumption and actually make the weight changes while the networkis running. This has the important advantage that no epoch boundaries need to be de�ned fortraining the network, leading to both a conceptual and an implementational simpli�cation of theprocedure. For this algorithm, we simply increment each weight wij by the amount �wij(t) given4

by equation 15 at time step t, without accumulating the values elsewhere and making the weightchanges at some later time.A potential disadvantage of this real-time procedure is that it no longer follows the precisenegative gradient of the total error along a trajectory. However, this is exactly analogous tothe commonly used method of training a feedforward net by making weight changes after eachpattern presentation rather than accumulating them elsewhere and then making the net changeafter the end of each complete cycle of pattern presentation. While the resulting algorithm is nolonger guaranteed to follow the gradient of total error, the practical di�erences are often slight,with the two versions becoming more nearly identical as the learning rate is made smaller. Themost severe potential consequence of this departure from true gradient-following behavior for real-time procedure for training the dynamics is that the observed trajectory may itself depend onthe variation in the weights caused by the learning algorithm, which can be viewed as providinganother source of negative feedback in the system. To avoid this, one wants the time scale of theweight changes to be much slower than the time scale of the network operation, meaning that thelearning rate must be su�ciently small.2.3 Teacher-Forced Real-Time Recurrent LearningAn interesting technique that is frequently used in dynamical supervised learning tasks (Jordan,1986; Pineda, 1988) is to replace the actual output yk(t) of a unit by the teacher signal dk(t) insubsequent computation of the behavior of the network, whenever such a value exists. We call thistechnique teacher forcing. The dynamics of a teacher-forced network during training are given byequations 2 and 3, as before, but where z(t) is now de�ned byzk(t) = 8><>: xk(t) if k 2 Idk(t) if k 2 T (t)yk(t) if k 2 U � T (t). (17)rather than by equation 1.To derive a learning algorithm for this situation, we once again di�erentiate the dynamicalequations with respect to wij. This time, however, we �nd that@yk(t+ 1)@wij = fk 0(sk(t)) 24 Xl2U�T (t)wkl@yl(t)@wij + �ikzj(t)35 ; (18)since @dl(t)=@wij = 0 for all l 2 T (t) and for all t. For the teacher-forced version we thus alterour learning algorithm so that the dynamics of the pkij values are given bypkij(t+ 1) = fk 0(sk(t)) 24 Xl2U�T (t)wklplij(t) + �ikzj(t)35 ; (19)rather than equation 12, with the same initial conditions as before. Note that equation 19 isthe same as equation 12 if we treat the values of plij(t) as zero for all l 2 T (t) when computingpkij(t + 1). 5

The teacher-forced version of the algorithm is thus essentially the same as the earlier one, withtwo simple alterations: (1) where speci�ed, desired values are used in place of actual values tocompute future activity in the network; and (2) the corresponding pkij values are set to zero afterthey have been used to compute the �wij values.2.4 Computational Features of the Real-Time Recurrent Learning Al-gorithmsIt is useful to view the triply indexed set of quantities pkij as a matrix, each of whose rows corre-sponds to a weight in the network and each of whose columns corresponds to a unit in the network.Looking at the update equations it is not hard to see that, in general, we must keep track of thevalues pkij even for those k corresponding to units that never receive a teacher signal. Thus wemust always have n columns in this matrix. However, if the weight wij is not to be trained (aswould happen, for example, if we constrain the network topology so that there is no connectionfrom unit j to unit i), then it is not necessary to compute the value pkij for any k 2 U . This meansthat this matrix need only have a row for each adaptable weight in the network, while having acolumn for each unit. Thus the minimal number of pkij values needed to store and update for ageneral network having n units and r adjustable weights is nr. For a fully interconnected networkof n units and m external input lines in which each connection has one adaptable weight, thereare n3 +mn2 such pkij values.3 Simulation ExperimentsWe have tested these algorithms on several tasks, most of which can be characterized as requiringthe network to learn to con�gure itself so that it stores important information computed fromthe input stream at earlier times to help determine the output at later times. In other words,the network is required to learn to represent useful internal state to accomplish these tasks. Forall the tasks described here, the experiments were run with the networks initially con�gured withfull interconnections among the units, with every input line connected to every unit, and with allweights having small randomly chosen values. The units to be trained were selected arbitrarily.More details on these simulations can be found in Williams and Zipser (1988).3.1 Pipelined XORFor this task, two nonbias input lines are used, each carrying a randomly selected bit on eachtime step. One unit in the network is trained to match a teacher signal at time t consisting of theXOR of the input values given to the network at time t� tau, where the computation delay tauis chosen in various experiments to be 2, 3, or 4 time steps. With 3 units and a delay of 2 timesteps, the network learns to con�gure itself to be a standard 2-hidden-unit multilayer network forcomputing this function. For longer delays, more units are required, and the network generallycon�gures itself to have more layers in order to match the required delay. Teacher forcing was notused for this task. 6

3.2 Simple Sequence RecognitionFor this task, there are two units and m nonbias input lines, where m >= 2. Two of the inputlines, called the a and b lines, serve a special purpose, with all others serving as distractors. Ateach time step exactly one input line carries a 1, with all others carrying a 0. The object is for aselected unit in the network to output a 1 immediately following the �rst occurrence of activityon the b line following activity on the a line, regardless of the intervening time span. At all othertimes, this unit should output a 0. Once such a b occurs, its corresponding a is considered to be\used up," so that the next time the unit should output a 1 is when a new a has been followedby its �rst \matching" b. Unlike the previous task, this cannot be performed by any feedforwardnetwork whose input comes from tapped delay lines on the input stream. A solution consistingessentially of a
ip-
op and an AND gate is readily found by the unforced version of the algorithm.3.3 Delayed Nonmatch to SampleIn this task, the network must remember a cued input pattern and then compare it to subsequentinput patterns, outputting a 0 if they match and a 1 if they don't. We have investigated a simpleversion of this task using a network with two input lines. One line represents the pattern and isset to 0 or 1 at random on each cycle. The other line is the cue that, when set to 1, indicates thatthe corresponding bit on the pattern line must be remembered and used for matching until thenext occurrence of the cue. The cue bit is set randomly as well. This task has some elements incommon with both of the previous tasks in that it involves an internal computation of the XORof appropriate bits (requiring a computation delay) as well as having the requirement that thenetwork retain inde�nitely the value of the cued pattern. One of the interesting features of thesolutions found by the unforced version of the algorithm is the nature of the internal representationof the cued pattern. Sometimes a single unit is recruited to act as an appropriate
ip-
op, withthe other units performing the required logic; at other times a dynamic distributed representationis developed in which no static pattern indicates the stored bit.3.4 Learning to Be a Turing MachineThe most elaborate of the tasks we have studied is that of learning to mimic the �nite statecontroller of a Turing machine deciding whether a tape marked with an arbitrary length string ofleft and right parentheses consists entirely of sets of balanced parentheses. The network observesthe actions of the �nite state controller but is not allowed to observe its states. Networks with 15units always learned the task. The minimum-size network to learn the task had 12 units.3.5 Learning to OscillateThree simple network oscillation tasks that we have studied are (1) training a single unit to produce010101...; (2) training a 2-unit net so that one of the units produces 00110011...; and (3) traininga 2-unit net so that one of the units produces approximately sinusoidal oscillation of period onthe order of 25 time steps in spite of the nonlinearity of the units involved.We have used both versions of the algorithm on these oscillation tasks, with and withoutteacher forcing, and we have found that only the version with teacher forcing is capable of solving7

these problems in general. The reason for this appears to be that in order to produce oscillationin a net that initially manifests settling behavior (because of the initial small weight values), theweights must be adjusted across a bifurcation boundary, but the gradient itself cannot yield thenecessary information because it is zero or very close to zero. However, if one is free to adjust bothweights and initial conditions, at least in some cases this problem disappears. Something like thisappears to be at the heart of the success of the use of teacher forcing: By using desired valuesin the net, one is helping to control the initial conditions for the subsequent dynamics. Pineda(1988) has observed a similar need for teacher forcing when attempting to add new stable pointsin an associative memory rather than just moving existing ones around.4 DiscussionOur primary goal here has been to derive a learning algorithm to train completely recurrent,continually updated networks to learn temporal tasks. Our emphasis has been on using uniformstarting con�gurations that contain no a priori information about the temporal nature of the task.In most cases we have used statistically derived training sets that have not been extensively opti-mized to promote learning. The results of the simulation experiments described here demonstratethat the algorithm has su�cient generality and power to work under these conditions.The algorithm we have described here is nonlocal in the sense that, for learning, each weightmust have access to both the complete recurrent weight matrix W and the whole error vector e.This makes it unlikely that this algorithm, in its current form, can serve as the basis for learningin actual neurophysiological networks. The algorithm is, however, inherently quite parallel so thatcomputation speed would bene�t greatly from parallel hardware.The solutions found by the algorithm are often dauntingly obscure, particularly for complextasks involving internal state. This observation is already familiar in work with feedforwardnetworks. This obscurity has often limited our ability to analyze the solutions in su�cient detail.In the simpler cases, where we can discern what is going on, an interesting kind of distributedrepresentation can be observed. Rather than only remembering a pattern in a static local ordistributed group of units, the networks sometimes incorporate the data that must be rememberedinto their functioning in such a way that there is no static pattern that represents it. This givesrise to dynamic internal representations that are, in a sense, distributed in both space and time.AcknowledgementsWe wish to thank Jonathan Bachrach for sharing with us his insights into the issue of trainingrecurrent networks. It was his work that �rst brought to our attention the possibility of on-linecomputation of the error gradient, and we hereby acknowledge his important contribution to ourown development of these ideas.This research was supported by Grant IRI-8703566 from the National Science Foundation tothe �rst author and Contract N00014-87-K-0671 from the O�ce of Naval Research, Grant 86-0062 from the Air Force O�ce of Scienti�c Research, and grants from the System DevelopmentFoundation to the second author. 8

ReferencesAlmeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a com-binatorial environment. Proceedings of the IEEE First International Conference on NeuralNetworks.Bachrach, J. (1988). Learning to represent state. Unpublished master's thesis, University ofMassachusetts, Amherst.Elman, J. L. (1988). Finding structure in time (CRL Tech. Rep. 8801). La Jolla: University ofCalifornia, San Diego, Center for Research in Language.Gallant, S. I. & King, D. (1988). Experiments with sequential associative memories. Proceedingsof the Tenth Annual Conference of the Cognitive Science Society.Hop�eld, J. J. (1982). Neural networks as physical systems with emergent collective computa-tional abilities. Proceedings of the National Academy of Sciences, 79, 2554-2558.Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential machine.Proceedings of the Eighth Annual Conference of the Cognitive Science Society, 531-546.Lapedes, A. & Farber, R. (1986). A self-optimizing, nonsymmetrical neural net for content ad-dressable memory and pattern recognition, Physica D, 22, 247-259.Mozer, M. C. (1988). A focused back-propagation algorithm for temporal pattern recognition (Tech.Rep.). University of Toronto, Departments of Psychology and Computer Science.McBride, L. E., Jr. & Narendra, K. S. (1965). Optimization of time-varying systems. IEEETransactions on Automatic Control, 10, 289-294.Pearlmutter, B. A. (1988). Learning state space trajectories in recurrent neural networks: A pre-liminary report (Tech. Rep. AIP-54). Pittsburgh: Carnegie Mellon University, Departmentof Computer Science.Pineda, F. J. (1988). Dynamics and architecture for neural computation, Journal of Complexity4, 216-245.Robinson, A. J. & Fallside, F. (1987). The utility driven dynamic error propagation network(Tech. Rep. CUED/F-INFENG/TR.1). Cambridge, England: Cambridge University Engi-neering Department.Rohwer, R. & Forrest, B. (1987). Training time-dependence in neural networks. Proceedings ofthe IEEE First International Conference on Neural Networks.Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representationsby error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group,Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1. Foun-dations. Cambridge: MIT Press/Bradford Books.Servan-Schreiber, D., Cleeremans, A., & McClelland (1988). Encoding sequential structure in9

simple recurrent networks (Tech. Rep. CMU-CS-88-183). Pittsburgh: Carnegie Mellon Uni-versity, Department of Computer Science.Stornetta, W. S., Hogg, T., & Huberman, B. A. (1987). A dynamical approach to temporalpattern processing. Proceedings of the IEEE Conference on Neural Information ProcessingSystems.

10

